Spider Algorithm for Clustering Time Series
نویسندگان
چکیده
In proportion to the rapid development of information technology, time series are today accumulated in finance, medicine, industry and so forth. Therefore, an analysis of them is an urgent need for these applications. As solving these problems clustering time series has much been paid attention. The similarity for the clustering is commonly measured with Euclidean distance and dynamic time warping. In this paper we propose an innovative and novel algorithm for clustering multivariate time series. The algorithm is called “Spider Algorithm”. We experimentally show that the similarity from spider algorithm is superior to Euclidean distance or warping path on dynamic time warping, especially when many clusters exist. Key–Words: Clustering, Multivariate time series, Biological inspired algorithms, Data mining
منابع مشابه
A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملCombination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملUse of the Improved Frog-Leaping Algorithm in Data Clustering
Clustering is one of the known techniques in the field of data mining where data with similar properties is within the set of categories. K-means algorithm is one the simplest clustering algorithms which have disadvantages sensitive to initial values of the clusters and converging to the local optimum. In recent years, several algorithms are provided based on evolutionary algorithms for cluster...
متن کاملAlgorithms for Segmenting Time Series
As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...
متن کامل